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Remarks on the equivalence between the shape-invariance 
condition and the factorisation condition 
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Department of Physics, Duke University, Durham, NC 27706, USA 

Received 14 October 1988 

Abstract. It is shown that the shape-invariance condition for supersymmetric potentials 
and the factorisation condition for Sturm-Liouville eigenvalue problems are equivalent. 
The roots of this self-consistency condition in supersymmetric quantum mechanics and 
the factorisation method are found in the theory of Riccati equations. 

It is well known [l] that supersymmetric quantum mechanics [ 2 ]  (susYQM)-the 
realisation of the algebra 

Q2 = (Q*)’ = 0 ( l a )  

{Q,Q*)  = H (1b) 

in terms of linear differential operators of first order-is identical to the factorisation 
method [3]. Thus the algebra (1) appears as the natural structure underlying the 
far-reaching concept [ 4,5] of solving Sturm-Liouville (Schrodinger) eigenvalue prob- 
lems via a factorisation of the differential equation into a product of differential 
operators of first order. 

It is the purpose of this paper to show that the factorisation condition (a criterion 
for the applicability of the factorisation method to an eigenvalue problem) is identical 
to the shape-invariance condition [6]. (The shape-invariance condition (discussed 
below, equation (9)) establishes the supersymmetry of a pair of associated Hamiltonians 
in terms of the potentials and allows an elegant algebraic solution of a given Schrodinger 
equation (see Khare and Sukhatme [l], also [6,7]).) Since both conditions are, in 
fact, based on the equivalence between a linear differential equation of second order 
and an associated Riccati equation [8], the extension of SUSYQM (and the factorisation 
method) to scattering problems (continuous eigenvalues) [ 1,7] can easily be done [5]. 

The realisation of the algebra (1) in the form 

leads to the supersymmetric Hamiltonian ( h  = 1; gi are Pauli spin matrices) 

H = f( p2 + W2( x) + u3 W’( x) )  (2b) 
with the superpotential W ( x ) .  

t Supported in part by the Alexander von Humboldt Stiftung (Feodor Lynen Program). 
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The spectrum of the Hamiltonian in (2b) is non-negative and the levels are, in 
general, degenerate. If the supersymmetry is not spontaneously broken, the ground 
state is non-degenerate and the ground-state energy is exactly zero; the corresponding 
wavefunction is normalisable [1, 91. 

Thus the ‘Hamiltonian’ of SUSYQM is the pair of Hamiltonians, H , ,  generated by 
the construction above: 

H , = $ p 2 + (  W2(x)*  W’(x))/2 

= $ p 2 +  V*(x ) .  (3) 

The spectrum of these Hamiltonians is identical (apart from the eigenvalue zero) and 
their (normalised) eigenfunctions are paired. This can be shown using the definitions 

Q - ( O  0 0  ’+) Q*=( A- O) 0 

where 

The Schrodinger equation ( E  f 0) 

H+Q = E$ = A+A-Q 

then implies 

H - ( A - $ )  = E ( A - Q )  

and 

H-cp = E’cp = A-A+cp 

implies 

H + ( A + v )  = E ’ ( A + q )  ( 5 4  

cp = E - ’ / * A - ~  Q = E - ’ / ~ A + ~ .  (6) 

with multiplicities preserved. The eigenfunctions are connected by 

(We use in the following the convention that the wavefunction Qo of the ground state 
of H - ,  given by 

is assumed to be normalisable.) 
If now the potentials 

W2(x) f W’(x)  
2 

V*(x) = 

of the partner Hamiltonians H ,  differ only in the parameters appearing in them, a 
simple algebraic solution scheme for all exactly solvable problems in quantum 
mechanics can be formulated [ 5 , 6 , 7 ] .  We begin this formulation by assuming the form 

V + ( a , x ) =  V - ( a , , x ) + L ( a , )  (9a)  
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for the relation between the potentials, where a is the set of parameters, a ,  is a function 
of a ( a ,  = f (a ) )  and the remainder L(al) is a function independent of x. Relation 
(sa)  implies for the superpotential W( a, x )  the equivalent condition 

W2(a,x)+  w r ( a , X ) -  W 2 ( a , , x ) +  W'(a1, x )=2L(a , ) .  (9b) 
Equations ( 9 4  b )  are the shape-invariance conditions for the partner potentials of a 
supersymmetric Hamiltonian; the self-consistency conditions (9) guarantee a simple 
algebraic solution for a (supersymmetric) Hamiltonian with a shape-invariant potential. 
The eigenvalues are, in this case, calculated by constructing formally a series of pairs 
of Hamiltonians, linked together by conditions (9) for the various potentials. Then 
the ground states of these Hamiltonians have to be determined; via the (paired) 
degeneracy of SIJSYQM these states give subsequently all excited states of the original 
Hamiltonian. 

Using this scheme, the spectrum of the Hamiltonian 
H = ; p 2 +  V(a, x )  

= H- (10) 

is obtained by constructing a series of Hamiltonians H,,, n = 0,1 ,2 ,  . . . , where H,= H- 
and HI = H+. The nth member of the series is the Hamiltonian 

where a,, is determined by n applications of the function f: In the first step the spectra 
of H,, and H,,+,, where H n + ,  is defined by 

have to be compared. 

spectra are identical, apart from the ground state E: of H,,, which is given by 
Since the Hamiltonians H ,  and H,,,, in ( 1 1 )  form a supersymmetric pair, their 

(Relation (12) can be easily verified using (sa) ,  ( l l a )  and the assumption of vanishing 
ground-state energy E! of H-(=Ho).) On the basis of this argument the degeneracy 
of the eigenvalues of H,, and H n - ,  can be compared; an iteration of the pairing 
argument leads finally to Ho = i p 2  + V( a, x), whose ground-state energy vanishes and 
whose nth excited level is degenerate with the ground state of the Hamiltonian 
H,, ( n  = 1 ,2 , .  . .). Thus the complete spectrum of a Hamiltonian H-, where 

H- = ;p2+  V( a, x )  

= ; p 2 +  VJa, x ) +  C ( a )  (lor) 
is given by the formal expression 

(where C ( a )  denotes an additive constant). 
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This elementary derivation of the energy levels, based on the shape invariance of 
the potential V(a ,  x )  and the pairwise degeneracy of supersymmetry, can be applied 
to all known exactly solvable problems in quantum mechanics. (Examples are listed in 

The factorisation method follows a similar scheme, providing a solution for the 
[ I ,  6,71.) 

eigenvalue problem 

= E$(x, m). (14) 

The parameter m, (14), is not restricted to integer values [4,5]. 
Equation (14) is called factorisable, when it can be replaced by each of the following 

two equations: 

~ ~ + I A ~ + l $ ( X ,  m )  = ( E  - L ( m  + 1))$(x, m )  

A+,A,$(x, m )  = ( E  -L(m))$(x,  m) .  

(15a) 

(15b) 

Here L ( m )  is an unknown function of the parameter m; the operators A; have the form 

d 
dx 

A; E F-+ k(x, m )  

acting on solutions $ ( x ,  m )  of (14) as 

A+,+I$(X,  m )  = $(x, m + 1 )  

A,$(x, m) = $(x, m - 1 ) .  

( 1 6 ~ )  

(16b) 

The unknown function k(x, m )  in (15c) can be determined by calculating the 
products of A , + , A ~ + ,  and A’-,A, (in (15a, b))  and comparing the results with equation 
(14). It follows that the eigenvalue problem (14) is factorisable if and only if the 
function k(x, m ) ,  (15c), satisfies the factorisation condition 

k2(x, m+l)+k’(x ,  m+1)+k2(x,  m)-k’ (x ,  m ) = L ( m ) - L ( m + l ) .  (17) 

Equation (17) is the basic self-consistency condition of the factorisation method, 
essentially classifying all factorisable problems [3]. Thus the (classical) factorisation 
procedure can be interpreted as replacing a given Hamiltonian by a pair of equivalent 
‘Hamiltonians’ with (apart from the ground state) identical spectra, defined by 

A 2  

(18a) 
U 

H ,  = - - + k2(  x, m + 1 )  + k’( x, m + 1)  + L( m + 1)  
dx2 

d2 
dx2 

H- = - -+ k2(x, m )  - k’(x, m )  + L( m ) .  

Comparing the pair of Hamiltonians in (18)  with the supersymmetric pair of 
(shape-invariant) Hamiltonians in ( 1  1 )  (or the general supersymmetric pair in (3)), 
we see that the factorisation method is by dejinition based on the replacement of a 
given Hamiltonian by an equivalent pair of Hamiltonians, constituting a supersym- 
metric Hamiltonian. This is the key observation, allowing us to summarise the 
equivalence between both algebraic procedures. 

(i) The factorisation condition (17) ,  is completely equivalent to the shape-invari- 
ance condition, (96). 
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(ii) Since every Friedrichs extension of a minimal Sturm-Liouville operator can 
be factorised [lo], all known exactly solvable problems of quantum mechanics can be 
transformed to supersymmetric form-the equivalent Hamiltonians in (18) correspond 
to the supersymmetric pair with shape-invariant potentials given in (1 1). 

(iii) The eigenvalues in problem (14) are determined in complete analogy to the 
'supersymmetric' procedure; the ground-state conditions 

A+mo+*$(X, mo) = 0 (19a) 

A,,$(x, mol = 0 (19b) 

Em, = L( mo+ 1) (19c) 

or 

give immediately the eigenvalue for this (degenerate) level via (15) as 

which corresponds to the procedure discussed for shape-invariant potentials. 

state, preserves normalisation. This can be shown using 
(iv) The generation of the eigenfunctions (see below), beginning with a normalised 

I ($(x, m + d x  = A+m+l$(X, m)A;+l$(x, m )  d x  I 
= 1 $(x, "i+,A;+l$(x, m )  d x  

= ( E - L ( m + l ) )  I ($(x, m))2dx. (20) 

If the eigenfunction $(x, m + 1) is normalised, the function $(x, m )  is also nor- 
malised provided the operators A:,, are multiplied with the factor [ E  - L ( m  + 1)l-l''. 

The eigenstates of (14) are generated via the same procedure as in SUSYQM; an 
iteration loop can be summarised as follows. 

We start with the definition of a ground state, assumed to be 

A+m,+l$(X, mo) = 0 (21) 
which gives (cf (19)) the eigenvalue Em,. All (degenerate) eigensolutions to this 
eigenvalue are determined by the ansatz: 

generating a finite sequence of eigenfunctions. In an obvious iteration of this procedure 
all solutions of (14) can be determined. 

The complete equivalence between the factorisation condition (17) and the shape- 
invariance condition (9b) as well as the equivalence of the corresponding pairs of 
Hamiltonians (( 11) and (18)) is not surprising since it results from a simple extension 
of a well known theorem in the theory of Riccati equations [8], as we now discuss. 

We consider the differential equation 

d2U(X)/dX2- ~ ( x ) u ( x )  = O  (23a)  
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where the function a (x )  is (by assumption) continuous on an interval Z of the real 
line. Let u(x)  be a solution of (23a) with u ( x )  # 0 for a subinterval lo of I.  Then the 
logarithmic derivative 

(23b) 
d 

W(x)=-ln u(x) 
dx 

is, on lo, a solution of the Riccati equation 

W’(x)+ W*(X) = a(x) .  

(This result can be extended to a linear, homogeneous, coupled first-order system [SI.) 
The extension is obtained by 
(i)  introducing parameter-dependent functions in (23); 
(ii) subtracting the resulting Riccati equations associated with a pair of equivalent 

Hamiltonians. 
Let us note here that the function k(x, m )  in equations (15), (17) and (18) is given 

by the logarithmic derivative of a solution of (14); this observation allows an easy 
verification of the statement above [4,5,8]. 

The complete equivalence between the factorisation method and the shape-invari- 
ance approach in SUSYQM implies that the range of applications for both procedures 
necessarily coincides (cf examples listed in Khare and Sukhatme [ 11 and also [3,8]); 
the extension of the factorisation method to continuous eigenvalues is-using the 
theory of Riccati equations-easy to formulate [ 51. 
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